

Chapter 5

Univariate time series modelling and forecasting

Dr. Roger Alejandro Banegas Rivero, Ph.D.

Univariate Time Series Models

• Where we attempt to predict returns using only information contained in their past values.

Some Notation and Concepts

- <u>A Strictly Stationary Process</u>
- A strictly stationary process is one where $P\{y_{t_1} \le b_1, \dots, y_{t_n} \le b_n\} = P\{y_{t_1+m} \le b_1, \dots, y_{t_n+m} \le b_n\}$

i.e. the probability measure for the sequence $\{y_t\}$ is the same as that for $\{y_{t+m}\} \forall m$.

<u>A Weakly Stationary Process</u>

If a series satisfies the next three equations, it is said to be weakly or covariance stationary

1.
$$E(y_t) = \mu$$
, $t = 1, 2, ..., \infty$
2. $E(y_t - \mu)(y_t - \mu) = \sigma^2 < \infty$
3. $E(y_{t_1} - \mu)(y_{t_2} - \mu) = \gamma_{t_2 - t_1} \forall t_1, t_2$

• So if the process is covariance stationary, all the variances are the same and all the covariances depend on the difference between t_1 and t_2 . The moments $E(y_t - E(y_t))(y_{t+s} - E(y_{t+s})) = \gamma_s, s = 0, 1, 2, ...$

are known as the covariance function.

- The covariances, γ_s , are known as autocovariances.
- However, the value of the autocovariances depend on the units of measurement of y_t .
- It is thus more convenient to use the autocorrelations which are the autocovariances normalised by dividing by the variance:

$$\tau_s = \frac{\gamma_s}{\gamma_0} \quad , \qquad s = 0, 1, 2, \dots$$

• If we plot τ_s against s=0,1,2,... then we obtain the autocorrelation function or correlogram.

A White Noise Process

- A white noise process is one with (virtually) no discernible structure. A definition of a white noise process is $E(y_t) = \mu$ $Var(y_t) = \sigma^2$ $\gamma_{t-r} = \begin{cases} \sigma^2 & \text{if } t = r \\ 0 & \text{otherwise} \end{cases}$
- Thus the autocorrelation function will be zero apart from a single peak of 1 at s = 0. $\tau_s \sim$ approximately N(0,1/T) where T = sample size
- We can use this to do significance tests for the autocorrelation coefficients by constructing a confidence interval.
- For example, a 95% confidence interval would be given by $\pm .196 \times \frac{1}{\sqrt{T}}$. If the sample autocorrelation coefficient, $\hat{\tau}_s$, falls outside this region for any value of *s*, then we reject the null hypothesis that the true value of the coefficient at lag *s* is zero.

• We can also test the joint hypothesis that all *m* of the τ_k correlation coefficients are simultaneously equal to zero using the *Q*-statistic developed by Box and Pierce: $Q = T \sum_{k=1}^{m} \tau_k^2$

where T = sample size, m = maximum lag length

- The Q-statistic is asymptotically distributed as a χ_m^2 .
- However, the Box Pierce test has poor small sample properties, so a variant has been developed, called the Ljung-Box statistic:

$$Q^* = T(T+2) \sum_{k=1}^{m} \frac{\tau_k^2}{T-k} \sim \chi_m^2$$

• This statistic is very useful as a portmanteau (general) test of linear dependence in time series.

Moving Average Processes

• Let u_t (t=1,2,3,...) be a sequence of independently and identically distributed (iid) random variables with $E(u_t)=0$ and $Var(u_t)=\sigma_{\mathcal{E}}^2$, then $y_t = \mu + u_t + \theta_1 u_{t-1} + \theta_2 u_{t-2} + ... + \theta_q u_{t-q}$

is a q^{th} order moving average model MA(q).

• Its properties are $E(y_t) = \mu; \text{ Var}(y_t) = \gamma_0 = (1 + \theta_1^2 + \theta_2^2 + ... + \theta_q^2)\sigma^2$ Covariances $\gamma_s = \begin{cases} (\theta_s + \theta_{s+1}\theta_1 + \theta_{s+2}\theta_2 + ... + \theta_q\theta_{q-s})\sigma^2 & \text{for } s = 1, 2, ..., q \\ 0 & \text{for } s > a \end{cases}$

Example of an MA Problem

1. Consider the following MA(2) process:

 $X_t = u_t + \theta_1 u_{t-1} + \theta_2 u_{t-2}$

where ε_t is a zero mean white noise process with variance σ^2 .

- (i) Calculate the mean and variance of X_t
- (ii) Derive the autocorrelation function for this process (i.e. express the autocorrelations, τ_1 , τ_2 , ... as functions of the parameters θ_1 and θ_2).
- (iii) If $\theta_1 = -0.5$ and $\theta_2 = 0.25$, sketch the acf of X_t .

Solution

(i) If $E(u_t)=0$, then $E(u_{t-i})=0 \forall i$. So

 $E(X_t) = E(u_t + \theta_1 u_{t-1} + \theta_2 u_{t-2}) = E(u_t) + \theta_1 E(u_{t-1}) + \theta_2 E(u_{t-2}) = 0$

 $Var(X_{t}) = E[X_{t}-E(X_{t})][X_{t}-E(X_{t})]$ but $E(X_{t}) = 0$, so $Var(X_{t}) = E[(X_{t})(X_{t})]$ $= E[(u_{t} + \theta_{1}u_{t-1} + \theta_{2}u_{t-2})(u_{t} + \theta_{1}u_{t-1} + \theta_{2}u_{t-2})]$ $= E[u_{t}^{2} + \theta_{1}^{2}u_{t-1}^{2} + \theta_{2}^{2}u_{t-2}^{2} + cross-products]$

But E[cross-products]=0 since $Cov(u_t, u_{t-s})=0$ for $s \neq 0$.

So Var(X_t) =
$$\gamma_0 = E \begin{bmatrix} u_t^2 + \theta_1^2 u_{t-1}^2 + \theta_2^2 u_{t-2}^2 \end{bmatrix}$$

= $\sigma^2 + \theta_1^2 \sigma^2 + \theta_2^2 \sigma^2$
= $(1 + \theta_1^2 + \theta_2^2)\sigma^2$

(ii) The acf of
$$X_t$$
.
 $\gamma_1 = E[X_t - E(X_t)][X_{t-1} - E(X_{t-1})]$
 $= E[X_t][X_{t-1}]$
 $= E[(u_t + \theta_1 u_{t-1} + \theta_2 u_{t-2})(u_{t-1} + \theta_1 u_{t-2} + \theta_2 u_{t-3})]$
 $= E[(\theta_1 u_{t-1}^2 + \theta_1 \theta_2 u_{t-2}^2)]$
 $= \theta_1 \sigma^2 + \theta_1 \theta_2 \sigma^2$
 $= (\theta_1 + \theta_1 \theta_2)\sigma^2$

$$\begin{aligned} \gamma_2 &= \mathrm{E}[X_t - \mathrm{E}(X_t)][X_{t-2} - \mathrm{E}(X_{t-2})] \\ &= \mathrm{E}[X_t][X_{t-2}] \\ &= \mathrm{E}[(u_t + \theta_1 u_{t-1} + \theta_2 u_{t-2})(u_{t-2} + \theta_1 u_{t-3} + \theta_2 u_{t-4})] \\ &= \mathrm{E}[(\theta_2 u_{t-2}^2)] \\ &= \theta_2 \sigma^2 \end{aligned}$$

$$\begin{aligned} \gamma_3 &= \mathrm{E}[X_t - \mathrm{E}(X_t)][X_{t-3} - \mathrm{E}(X_{t-3})] \\ &= \mathrm{E}[X_t][X_{t-3}] \\ &= \mathrm{E}[(u_t + \theta_1 u_{t-1} + \theta_2 u_{t-2})(u_{t-3} + \theta_1 u_{t-4} + \theta_2 u_{t-5})] \\ &= 0 \end{aligned}$$

So $\gamma_s = 0$ for s > 2.

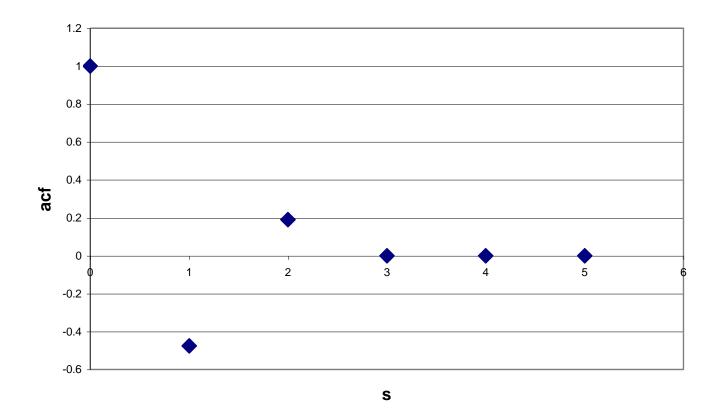
We have the autocovariances, now calculate the autocorrelations:

$$\begin{aligned} \tau_0 &= \frac{\gamma_0}{\gamma_0} = 1\\ \tau_1 &= \frac{\gamma_1}{\gamma_0} = \frac{(\theta_1 + \theta_1 \theta_2)\sigma^2}{(1 + \theta_1^2 + \theta_2^2)\sigma^2} = \frac{(\theta_1 + \theta_1 \theta_2)}{(1 + \theta_1^2 + \theta_2^2)}\\ \tau_2 &= \frac{\gamma_2}{\gamma_0} = \frac{(\theta_2)\sigma^2}{(1 + \theta_1^2 + \theta_2^2)\sigma^2} = \frac{\theta_2}{(1 + \theta_1^2 + \theta_2^2)}\\ \tau_3 &= \frac{\gamma_3}{\gamma_0} = 0\\ \tau_s &= \frac{\gamma_s}{\gamma_0} = 0 \forall s > 2 \end{aligned}$$

(iii) For $\theta_1 = -0.5$ and $\theta_2 = 0.25$, substituting these into the formulae above gives $\tau_1 = -0.476$, $\tau_2 = 0.190$.

ACF Plot

Thus the ACF plot will appear as follows:



Autoregressive Processes

• An autoregressive model of order p, an AR(p) can be expressed as

$$y_{t} = \mu + \phi_{1} y_{t-1} + \phi_{2} y_{t-2} + \dots + \phi_{p} y_{t-p} + u_{t}$$

- Or using the lag operator notation:
 - $Ly_t = y_{t-1} \qquad \qquad L^i y_t = y_{t-i}$

$$y_{t} = \mu + \sum_{i=1}^{p} \phi_{i} y_{t-i} + u_{t}$$

• or $y_{t} = \mu + \sum_{i=1}^{p} \phi_{i} L^{i} y_{t} + u_{t}$

or $\phi(L)y_t = \mu + u_t$

where

$$\phi(L) = 1 - (\phi_1 L + \phi_2 L^2 + \dots \phi_p L^p)$$

- The condition for stationarity of a general AR(*p*) model is that the roots of $1 \phi_1 z \phi_2 z^2 \dots \phi_p z^p = 0$ all lie outside the unit circle.
- A stationary AR(p) model is required for it to have an $MA(\infty)$ representation.
- Example 1: Is $y_t = y_{t-1} + u_t$ stationary? The characteristic root is 1, so it is a unit root process (so non-stationary)
- Example 2: Is $y_t = 3y_{t-1} 0.25y_{t-2} + 0.75y_{t-3} + u_t$ stationary? The characteristic roots are 1, 2/3, and 2. Since only one of these lies outside the unit circle, the process is non-stationary.

- States that any stationary series can be decomposed into the sum of two unrelated processes, a purely deterministic part and a purely stochastic part, which will be an MA(∞).
- For the AR(*p*) model, $\phi(L)y_t = u_t$, ignoring the intercept, the Wold decomposition is

$$y_t = \psi(L)u_t$$

where,

$$\psi(L) = (1 - \phi_1 L - \phi_2 L^2 - \dots - \phi_p L^p)^{-1}$$

The Moments of an Autoregressive Process

• The moments of an autoregressive process are as follows. The mean is given by ϕ_0

$$E(y_t) = \frac{\varphi_0}{1 - \phi_1 - \phi_2 - \dots - \phi_p}$$

• The autocovariances and autocorrelation functions can be obtained by solving what are known as the Yule-Walker equations:

$$\begin{aligned} \tau_{1} &= \phi_{1} + \tau_{1}\phi_{2} + \ldots + \tau_{p-1}\phi_{p} \\ \tau_{2} &= \tau_{1}\phi_{1} + \phi_{2} + \ldots + \tau_{p-2}\phi_{p} \\ \vdots & \vdots & \vdots \\ \tau_{p} &= \tau_{p-1}\phi_{1} + \tau_{p-2}\phi_{2} + \ldots + \phi_{p} \end{aligned}$$

• If the AR model is stationary, the autocorrelation function will decay exponentially to zero.

Sample AR Problem

• Consider the following simple AR(1) model

$$y_t = \mu + \phi_1 y_{t-1} + u_t$$

(i) Calculate the (unconditional) mean of y_t .

For the remainder of the question, set $\mu=0$ for simplicity.

(ii) Calculate the (unconditional) variance of y_t .

(iii) Derive the autocorrelation function for y_t .

Solution

(i) Unconditional mean:

$$E(y_t) = E(\mu + \phi_1 y_{t-1})$$
$$= \mu + \phi_1 E(y_{t-1})$$
But also

So
$$E(y_t) = \mu + \phi_1 (\mu + \phi_1 E(y_{t-2}))$$

= $\mu + \phi_1 \mu + \phi_1^2 E(y_{t-2}))$

$$E(y_t) = \mu + \phi_1 \mu + \phi_1^2 E(y_{t-2}))$$

= $\mu + \phi_1 \mu + \phi_1^2 (\mu + \phi_1 E(y_{t-3}))$
= $\mu + \phi_1 \mu + \phi_1^2 \mu + \phi_1^3 E(y_{t-3})$

An infinite number of such substitutions would give

 $E(y_t) = \mu(1 + \phi_1^2 + ...) + \phi_1^{\infty} y_0$ So long as the model is stationary, i.e., then $\phi_1^{\infty} = 0$.

So
$$E(y_t) = \mu (1 + \phi_1 + \phi_1^2 + ...) = \frac{\mu}{1 - \phi_1}$$

(ii) Calculating the variance of y_t : $y_t = \phi_1 y_{t-1} + u_t$

From Wold's decomposition theorem: $y_t (1 - \phi_1 L) = u_t$ $y_t = (1 - \phi_1 L)^{-1} u_t$ $y_t = (1 + \phi_1 L + \phi_1^2 L^2 + ...) u_t$

So long as
$$|\phi_1| < 1$$
, this will converge.
 $y_t = u_t + \phi_1 u_{t-1} + \phi_1^2 u_{t-2} + ...$
 $Var(y_t) = E[y_t - E(y_t)][y_t - E(y_t)]$
but $E(y_t) = 0$, since we are setting $\mu = 0$.
 $Var(y_t) = E[(y_t)(y_t)]$
 $= E[(u_t + \phi_1 u_{t-1} + \phi_1^2 u_{t-2} + ...)(u_t + \phi_1 u_{t-1} + \phi_1^2 u_{t-2} + ...)]$
 $= E[(u_t^2 + \phi_1^2 u_{t-1}^2 + \phi_1^4 u_{t-2}^2 + ... + cross - products)]$
 $= E[(u_t^2 + \phi_1^2 \sigma_u^2 + \phi_1^4 \sigma_u^2 + ...)]$
 $= \sigma_u^2 + \phi_1^2 \sigma_u^2 + \phi_1^4 \sigma_u^2 + ...$
 $= \sigma_u^2(1 + \phi_1^2 + \phi_1^4 + ...)$
 $= \frac{\sigma_u^2}{(1 - \phi_1^2)}$

(iii) Turning now to calculating the acf, first calculate the autocovariances:

$$\gamma_1 = \text{Cov}(y_t, y_{t-1}) = \text{E}[y_t - \text{E}(y_t)][y_{t-1} - \text{E}(y_{t-1})]$$

Since a_0 has been set to zero, $E(y_t) = 0$ and $E(y_{t-1}) = 0$, so

$$\gamma_{1} = E[y_{t}y_{t-1}]$$

$$\gamma_{1} = E[(u_{t} + \phi_{1}u_{t-1} + \phi_{1}^{2}u_{t-2} + ...)(u_{t-1} + \phi_{1}u_{t-2} + \phi_{1}^{2}u_{t-3} + ...)]$$

$$= E[\phi_{1} u_{t-1}^{2} + \phi_{1}^{3}u_{t-2}^{2} + ... + cross - products]$$

$$= \phi_{1}\sigma^{2} + \phi_{1}^{3}\sigma^{2} + \phi_{1}^{5}\sigma^{2} + ...$$

$$= \frac{\phi_1 \sigma^2}{(1 - \phi_1^2)}$$

For the second autocorrelation coefficient,

 $\gamma_2 = \text{Cov}(y_t, y_{t-2}) = \text{E}[y_t - \text{E}(y_t)][y_{t-2} - \text{E}(y_{t-2})]$

Using the same rules as applied above for the lag 1 covariance

$$\begin{split} \gamma_{2} &= \mathrm{E}[y_{t}y_{t-2}] \\ &= \mathrm{E}[(u_{t} + \phi_{1}u_{t-1} + \phi_{1}^{2}u_{t-2} + ...)(u_{t-2} + \phi_{1}u_{t-3} + \phi_{1}^{2}u_{t-4} + ...)] \\ &= \mathrm{E}[\phi_{1}^{2}u_{t-2}^{2} + \phi_{1}^{4}u_{t-3}^{2} + ... + cross - products] \\ &= \phi_{1}^{2}\sigma^{2} + \phi_{1}^{4}\sigma^{2} + ... \\ &= \phi_{1}^{2}\sigma^{2}(1 + \phi_{1}^{2} + \phi_{1}^{4} + ...) \\ &= \frac{\phi_{1}^{2}\sigma^{2}}{(1 - \phi_{1}^{2})} \end{split}$$

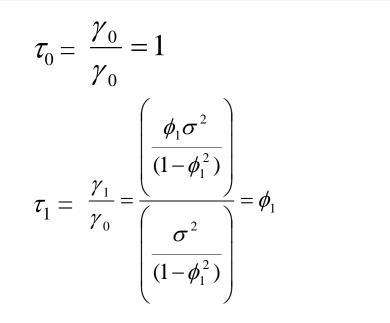
• If these steps were repeated for γ_3 , the following expression would be obtained

$$\gamma_3 = \frac{\phi_1^3 \sigma^2}{(1-\phi_1^2)}$$

and for any lag *s*, the autocovariance would be given by

$$\gamma_{\rm s} = \frac{\phi_1^{\,s} \sigma^2}{(1-\phi_1^{\,2})}$$

The acf can now be obtained by dividing the covariances by the variance:



$$\tau_{2} = \frac{\gamma_{2}}{\gamma_{0}} = \frac{\left(\frac{\phi_{1}^{2}\sigma^{2}}{(1-\phi_{1}^{2})}\right)}{\left(\frac{\sigma^{2}}{(1-\phi_{1}^{2})}\right)} = \phi_{1}^{2}$$

 $\tau_3 = \phi_1^3$

 $\tau_{\rm s} = \phi_1^{s}$

- Measures the correlation between an observation *k* periods ago and the current observation, after controlling for observations at intermediate lags (i.e. all lags < *k*).
- So τ_{kk} measures the correlation between y_t and y_{t-k} after removing the effects of y_{t-k+1} , y_{t-k+2} , ..., y_{t-1} .
- At lag 1, the acf = pacf always
- At lag 2, $\tau_{22} = (\tau_2 \tau_1^2) / (1 \tau_1^2)$
- For lags 3+, the formulae are more complex.

The Partial Autocorrelation Function (denoted τ_{kk}) (cont'd)

- The pacf is useful for telling the difference between an AR process and an ARMA process.
- In the case of an AR(p), there are direct connections between y_t and y_{t-s} only for $s \le p$.
- So for an AR(*p*), the theoretical pacf will be zero after lag *p*.
- In the case of an MA(q), this can be written as an AR(∞), so there are direct connections between y_t and all its previous values.
- For an MA(q), the theoretical pacf will be geometrically declining.

ARMA Processes

• By combining the AR(p) and MA(q) models, we can obtain an ARMA(p,q) model: $\phi(L)y_t = \mu + \theta(L)u_t$

where
$$\phi(L) = 1 - \phi_1 L - \phi_2 L^2 - \dots - \phi_p L^p$$

and
$$\theta(L) = 1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_q L^q$$

or
$$y_t = \mu + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \theta_1 u_{t-1} + \theta_2 u_{t-2} + \dots + \theta_q u_{t-q} + u_t$$

with
$$E(u_t) = 0; E(u_t^2) = \sigma^2; E(u_t u_s) = 0, t \neq s$$

The Invertibility Condition

- Similar to the stationarity condition, we typically require the MA(q) part of the model to have roots of $\theta(z)=0$ greater than one in absolute value.
- The mean of an ARMA series is given by

$$E(y_t) = \frac{\mu}{1 - \phi_1 - \phi_2 - \dots - \phi_p}$$

• The autocorrelation function for an ARMA process will display combinations of behaviour derived from the AR and MA parts, but for lags beyond *q*, the acf will simply be identical to the individual AR(*p*) model.

Summary of the Behaviour of the acf for AR and MA Processes

An autoregressive process has

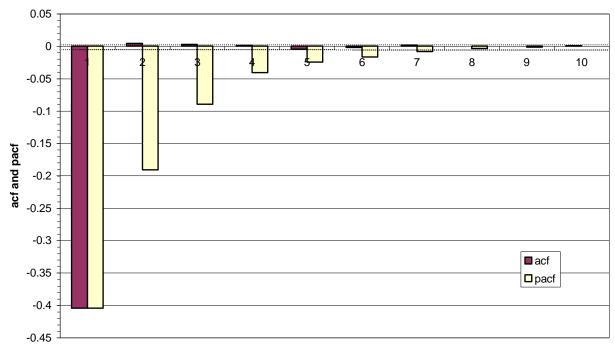
- a geometrically decaying acf
- number of spikes of pacf = AR order

A moving average process has

- Number of spikes of acf = MA order
- a geometrically decaying pacf

Some sample acf and pacf plots for standard processes

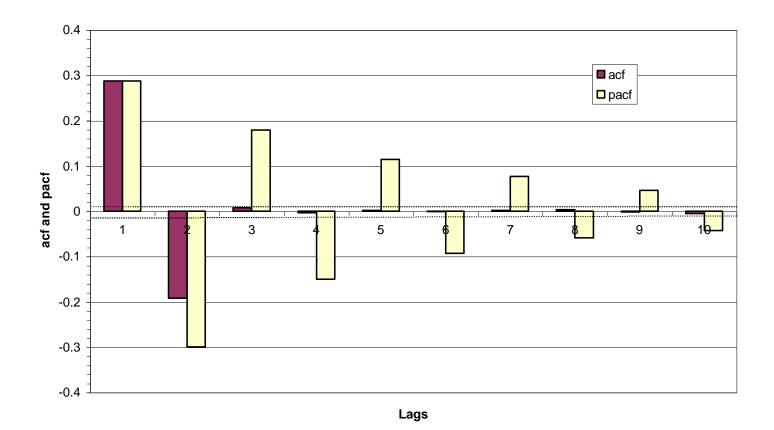
The acf and pacf are not produced analytically from the relevant formulae for a model of that type, but rather are estimated using 100,000 simulated observations with disturbances drawn from a normal distribution.



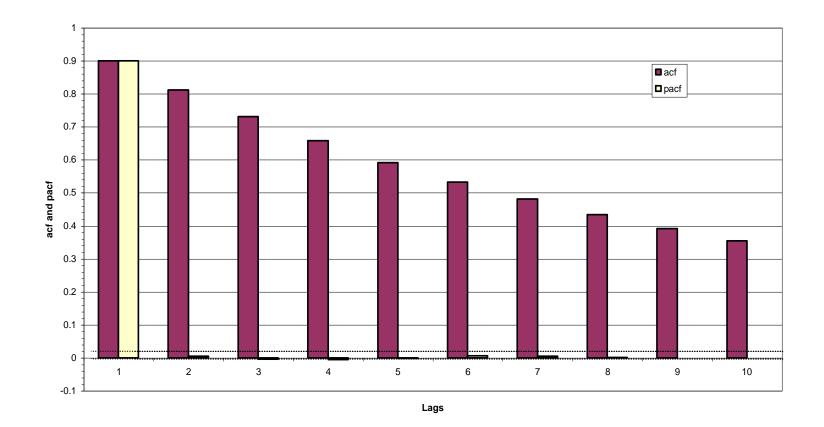
ACF and PACF for an MA(1) Model: $y_t = -0.5u_{t-1} + u_t$

Lag

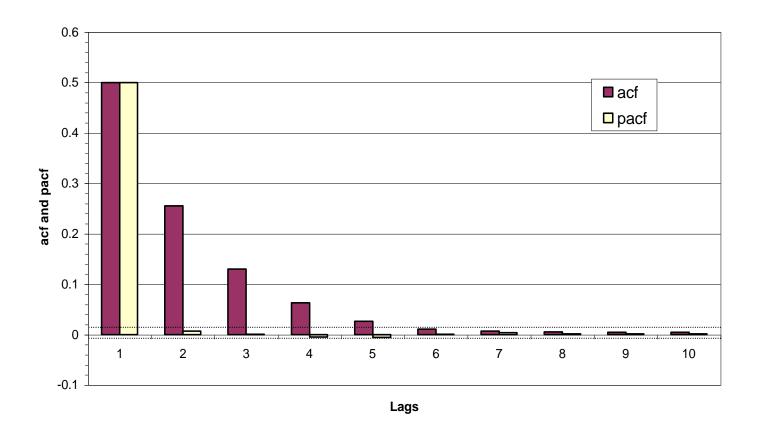
ACF and PACF for an MA(2) Model: $y_t = 0.5u_{t-1} - 0.25u_{t-2} + u_t$



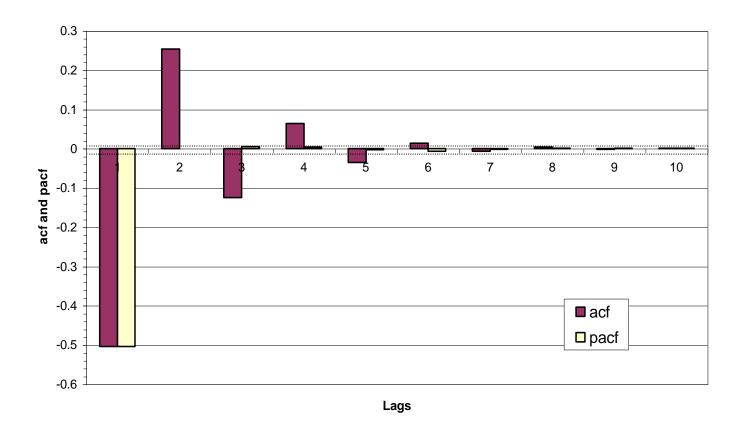
ACF and PACF for a slowly decaying AR(1) Model: $y_t = 0.9y_{t-1} + u_t$



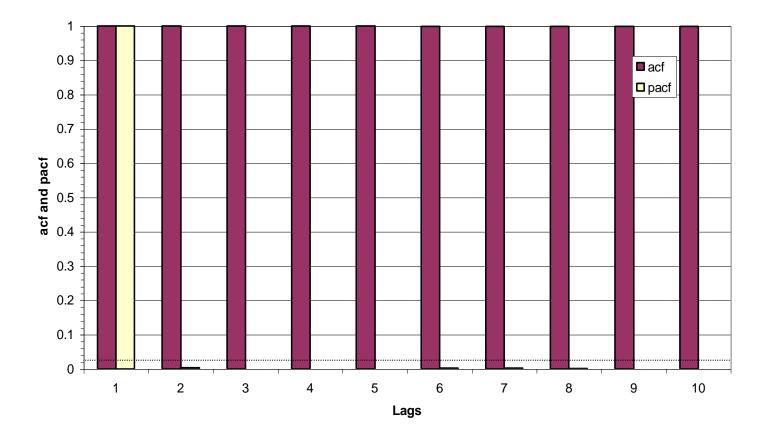
ACF and PACF for a more rapidly decaying AR(1) Model: $y_t = 0.5y_{t-1} + u_t$



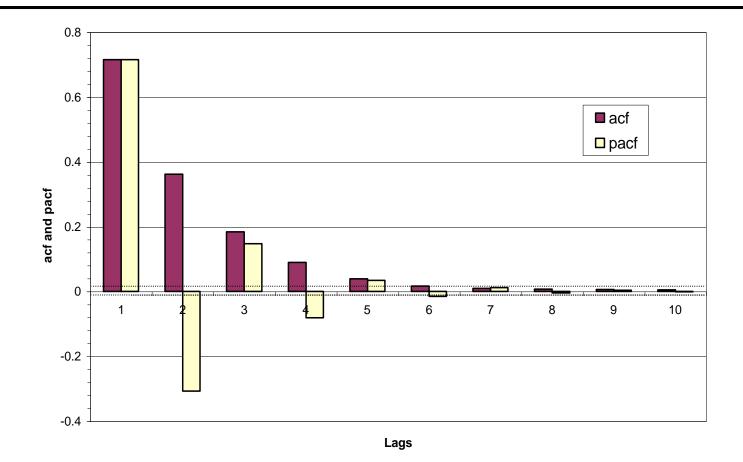
ACF and PACF for a more rapidly decaying AR(1) Model with Negative Coefficient: $y_t = -0.5y_{t-1} + u_t$



ACF and PACF for a Non-stationary Model (i.e. a unit coefficient): $y_t = y_{t-1} + u_t$



ACF and PACF for an ARMA(1,1): $y_t = 0.5y_{t-1} + 0.5u_{t-1} + u_t$



Building ARMA Models - The Box Jenkins Approach

- Box and Jenkins (1970) were the first to approach the task of estimating an ARMA model in a systematic manner. There are 3 steps to their approach:
 - 1. Identification
 - 2. Estimation
 - 3. Model diagnostic checking

<u>Step 1:</u>

- Involves determining the order of the model.
- Use of graphical procedures
- A better procedure is now available

Building ARMA Models - The Box Jenkins Approach (cont'd)

<u>Step 2:</u>

- Estimation of the parameters
- Can be done using least squares or maximum likelihood depending on the

model.

<u>Step 3:</u>

- Model checking

Box and Jenkins suggest 2 methods:

- deliberate overfitting
- residual diagnostics

Some More Recent Developments in ARMA Modelling

- <u>Identification</u> would typically not be done using acf's.
- We want to form a parsimonious model.
- Reasons:
 - variance of estimators is inversely proportional to the number of degrees of freedom.
 - models which are profligate might be inclined to fit to data specific features
- This gives motivation for using <u>information criteria</u>, which embody 2 factors
 - a term which is a function of the RSS
 - some penalty for adding extra parameters
- The object is to choose the number of parameters which minimises the information criterion.

- The information criteria vary according to how stiff the penalty term is.
- The three most popular criteria are Akaike's (1974) information criterion (AIC), Schwarz's (1978) Bayesian information criterion (SBIC), and the Hannan-Quinn criterion (HQIC).

$$AIC = \ln(\hat{\sigma}^2) + 2k / T$$
$$SBIC = \ln(\hat{\sigma}^2) + \frac{k}{T} \ln T$$
$$HQIC = \ln(\hat{\sigma}^2) + \frac{2k}{T} \ln(\ln(T))$$

where k = p + q + 1, T = sample size. So we min. *IC* s.t. $p \le \overline{p}, q \le \overline{q}$ *SBIC* embodies a stiffer penalty term than *AIC*.

- Which IC should be preferred if they suggest different model orders?
 - *SBIC* is strongly consistent but (inefficient).
 - *AIC* is not consistent, and will typically pick "bigger" models.

ARIMA Models

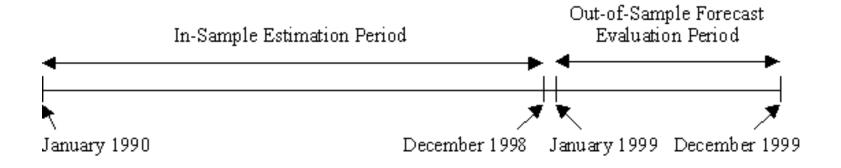
- As distinct from ARMA models. The I stands for integrated.
- An integrated autoregressive process is one with a characteristic root on the unit circle.
- Typically researchers difference the variable as necessary and then build an ARMA model on those differenced variables.
- An ARMA(*p*,*q*) model in the variable differenced *d* times is equivalent to an ARIMA(*p*,*d*,*q*) model on the original data.

Forecasting in Econometrics

- Forecasting = prediction.
- An important test of the adequacy of a model. <u>e.g.</u>
- Forecasting tomorrow's return on a particular share
- Forecasting the price of a house given its characteristics
- Forecasting the riskiness of a portfolio over the next year
- Forecasting the volatility of bond returns
- We can distinguish two approaches:
- Econometric (structural) forecasting
- Time series forecasting
- The distinction between the two types is somewhat blurred (e.g, VARs).

In-Sample Versus Out-of-Sample

- Expect the "forecast" of the model to be good in-sample.
- Say we have some data e.g. monthly FTSE returns for 120 months: 1990M1 – 1999M12. We could use all of it to build the model, or keep some observations back:



• A good test of the model since we have not used the information from 1999M1 onwards when we estimated the model parameters.

How to produce forecasts

- Multi-step ahead versus single-step ahead forecasts
- Recursive versus rolling windows
- To understand how to construct forecasts, we need the idea of conditional expectations: $E(y_{t+1} | \Omega_t)$
- We cannot forecast a white noise process: $E(u_{t+s} \mid \Omega_t) = 0 \forall s > 0$.
- The two simplest forecasting "methods"

1. Assume no change : $f(y_{t+s}) = y_t$

2. Forecasts are the long term average $f(y_{t+s}) = \overline{y}$

Models for Forecasting

• Structural models

e.g.
$$y = X\beta + u$$

 $y_t = \beta_1 + \beta_2 x_{2t} + \ldots + \beta_k x_{kt} + u_t$

To forecast y, we require the conditional expectation of its future value: $E(y_t | \Omega_{t-1}) = E(\beta_1 + \beta_2 x_{2t} + ... + \beta_k x_{kt} + u_t)$ $= \beta_1 + \beta_2 E(x_{2t}) + ... + \beta_k E(x_{kt})$ But what are $E(x_{2t})$ etc.? We could use \bar{x}_2 , so $E(y_t) = \beta_1 + \beta_2 \bar{x}_2 + ... + \beta_k \bar{x}_k$

'Introductory Econometrics for Finance' © Chris Brooks 2008

 $= \overline{y} \parallel$

<u>Time Series Models</u>

The current value of a series, y_t , is modelled as a function only of its previous values and the current value of an error term (and possibly previous values of the error term).

- Models include:
 - simple unweighted averages
 - exponentially weighted averages
 - ARIMA models
 - Non-linear models e.g. threshold models, GARCH, bilinear models, etc.

Forecasting with ARMA Models

The forecasting model typically used is of the form:

$$f_{t,s} = \mu + \sum_{i=1}^{p} \phi_i f_{t,s-i} + \sum_{j=1}^{q} \theta_j u_{t+s-j}$$

where
$$f_{t,s} = y_{t+s}$$
, $s \le 0$; $u_{t+s} = 0$, $s > 0$
= u_{t+s} , $s \le 0$

• An MA(q) only has memory of q.

e.g. say we have estimated an MA(3) model:

$$y_{t} = \mu + \theta_{1}u_{t-1} + \theta_{2}u_{t-2} + \theta_{3}u_{t-3} + u_{t}$$

$$y_{t+1} = \mu + \theta_{1}u_{t} + \theta_{2}u_{t-1} + \theta_{3}u_{t-2} + u_{t+1}$$

$$y_{t+2} = \mu + \theta_{1}u_{t+1} + \theta_{2}u_{t} + \theta_{3}u_{t-1} + u_{t+2}$$

$$y_{t+3} = \mu + \theta_{1}u_{t+2} + \theta_{2}u_{t+1} + \theta_{3}u_{t} + u_{t+3}$$

• We are at time *t* and we want to forecast 1,2,..., *s* steps ahead.

• We know
$$y_t$$
, y_{t-1} , ..., and u_t , u_{t-1}

$$\begin{aligned} f_{t,1} &= \mathrm{E}(y_{t+1|t}) &= & \mathrm{E}(\mu + \theta_1 u_t + \theta_2 u_{t-1} + \theta_3 u_{t-2} + u_{t+1}) \\ &= & \mu + \theta_1 u_t + \theta_2 u_{t-1} + \theta_3 u_{t-2} \\ f_{t,2} &= \mathrm{E}(y_{t+2|t}) &= & \mathrm{E}(\mu + \theta_1 u_{t+1} + \theta_2 u_t + \theta_3 u_{t-1} + u_{t+2}) \\ &= & \mu + \theta_2 u_t + \theta_3 u_{t-1} \\ f_{t,3} &= \mathrm{E}(y_{t+3|t}) &= & \mathrm{E}(\mu + \theta_1 u_{t+2} + \theta_2 u_{t+1} + \theta_3 u_t + u_{t+3}) \\ &= & \mu + \theta_3 u_t \\ f_{t,4} &= \mathrm{E}(y_{t+4|t}) &= & \mu \\ f_{t,5} &= \mathrm{E}(y_{t+4|t}) &= & \mu \\ \end{cases}$$

Forecasting with AR Models

• Say we have estimated an AR(2)

$$y_{t} = \mu + \phi_{1}y_{t-1} + \phi_{2}y_{t-2} + u_{t}$$

$$y_{t+1} = \mu + \phi_{1}y_{t} + \phi_{2}y_{t-1} + u_{t+1}$$

$$y_{t+2} = \mu + \phi_{1}y_{t+1} + \phi_{2}y_{t} + u_{t+2}$$

$$y_{t+3} = \mu + \phi_{1}y_{t+2} + \phi_{2}y_{t+1} + u_{t+3}$$

$$f_{t,1} = E(y_{t+1|t}) = E(\mu + \phi_1 y_t + \phi_2 y_{t-1} + u_{t+1})$$

= $\mu + \phi_1 E(y_t) + \phi_2 E(y_{t-1})$
= $\mu + \phi_1 y_t + \phi_2 y_{t-1}$

$$f_{t,2} = E(y_{t+2|t}) = E(\mu + \phi_1 y_{t+1} + \phi_2 y_t + u_{t+2})$$

= $\mu + \phi_1 E(y_{t+1}) + \phi_2 E(y_t)$
= $\mu + \phi_1 f_{t,1} + \phi_2 y_t$

Forecasting with AR Models (cont'd)

$$f_{t,3} = \mathbf{E}(y_{t+3|t}) = \mathbf{E}(\mu + \phi_1 y_{t+2} + \phi_2 y_{t+1} + u_{t+3})$$

= $\mu + \phi_1 \mathbf{E}(y_{t+2}) + \phi_2 \mathbf{E}(y_{t+1})$
= $\mu + \phi_1 f_{t,2} + \phi_2 f_{t,1}$

• We can see immediately that

$$f_{t,4} = \mu + \phi_1 f_{t,3} + \phi_2 f_{t,2}$$
 etc., so

 $f_{t,s} = \mu + \phi_1 f_{t,s-1} + \phi_2 f_{t,s-2}$

• Can easily generate ARMA(p,q) forecasts in the same way.

How can we test whether a forecast is accurate or not?

•For example, say we predict that tomorrow's return on the FTSE will be 0.2, but the outcome is actually -0.4. Is this accurate? Define $f_{t,s}$ as the forecast made at time *t* for *s* steps ahead (i.e. the forecast made for time *t*+*s*), and y_{t+s} as the realised value of *y* at time *t*+*s*.

• Some of the most popular criteria for assessing the accuracy of time series forecasting techniques are:

$$MSE = \frac{1}{N} \sum_{t=1}^{N} (y_{t+s} - f_{t,s})^2$$

MAE is given by $MAE = \frac{1}{N} \sum_{t=1}^{N} |y_{t+s} - f_{t,s}|$

Mean absolute percentage error: $MAPE = 100 \times \frac{1}{N} \sum_{t=1}^{N} \left| \frac{y_{t+s} - f_{t,s}}{y_{t+s}} \right|$

How can we test whether a forecast is accurate or not? (cont'd)

- It has, however, also recently been shown (Gerlow *et al.*, 1993) that the accuracy of forecasts according to traditional statistical criteria are not related to trading profitability.
- A measure more closely correlated with profitability:

% correct sign predictions =
$$\frac{1}{N} \sum_{t=1}^{N} z_{t+s}$$

where

$$z_{t+s} = 1 \text{ if } (x_{t+s} \cdot f_{t,s}) > 0$$

$$z_{t+s} = 0 \text{ otherwise}$$

• Given the following forecast and actual values, calculate the MSE, MAE and percentage of correct sign predictions:

Steps Ahead	Forecast	Actual
1	0.20	-0.40
2	0.15	0.20
3	0.10	0.10
4	0.06	-0.10
5	0.04	-0.05

• MSE = 0.079, MAE = 0.180, % of correct sign predictions = 40

What factors are likely to lead to a good forecasting model?

- "signal" versus "noise"
- "data mining" issues
- simple versus complex models
- financial or economic theory

Statistical Versus Economic or Financial loss functions

- Statistical evaluation metrics may not be appropriate.
- How well does the forecast perform in doing the job we wanted it for?

Limits of forecasting: What can and cannot be forecast?

- All statistical forecasting models are essentially extrapolative
- Forecasting models are prone to break down around turning points
- Series subject to structural changes or regime shifts cannot be forecast
- Predictive accuracy usually declines with forecasting horizon
- Forecasting is not a substitute for judgement

- Why not use "experts" to make judgemental forecasts?
- Judgemental forecasts bring a different set of problems: e.g., psychologists have found that expert judgements are prone to the following biases:
 - over-confidence
 - inconsistency
 - recency
 - anchoring
 - illusory patterns
 - "group-think".
- The Usually Optimal Approach

To use a statistical forecasting model built on solid theoretical foundations supplemented by expert judgements and interpretation.